skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Safaltin, Serzat"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Multi‐copper oxidases (MCOs) are enzymes of significant interest in biotechnology due to their efficient catalysis of oxygen reduction to water, making them valuable in sustainable energy production and bio‐electrochemical applications. This study employs time‐dependent density functional theory (TDDFT) to investigate the electronic structure and spectroscopic properties of the Type 1 (T1) copper site in Azurin, which serves as a model for similar sites in MCOs. Four model complexes of varying complexity were derived from the T1 site, including 3 three‐coordinate models and 1 four‐coordinate model with axial methionine ligation, to explore the impact of molecular branches and axial coordination. Calculations using ωB97X‐D3 functional, def2‐TZVP basis set, and conductor‐like polarizable continuum model (CPCM) solvation model reproduced key experimental spectral features, with increased model complexity improving agreement, particularly for the ~400 cm−1band splitting in resonance Raman spectra. This work enhances our understanding of T1 copper sites' electronic properties and spectra, bridging the gap between simplified models and complex proteins. The findings contribute to the interpretation of spectroscopic data in blue copper proteins and may inform future studies on similar biological systems. 
    more » « less
    Free, publicly-accessible full text available January 5, 2026